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ABSTRACT 
In this paper, a new radix-3 algorithm for realization of discrete Fourier transform (DFT) of length N = 3

m 
(m = 

1, 2, 3,...) is presented. The DFT of length N can be realized from three DFT sequences, each of length N/3. If 

the input signal has length N, direct calculation of DFT requires O (N
2
) complex multiplications (4N

2
 real 

multiplications) and some additions. This radix-3 algorithm reduces the number of multiplications required for 

realizing DFT. For example, the number of complex multiplications required for realizing 9-point DFT using the 

proposed radix-3 algorithm is 60. Thus, saving in time can be achieved in the realization of proposed algorithm. 
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I. INTRODUCTION 

Discrete transforms play a significant role 

in digital signal processing. Among all the discrete 

transforms, the discrete Fourier transform (DFT) is 

the most popular transform, and it is mainly due to 

its usefulness in very large number of applications 

in different areas of science and technology. The 

DFT plays a key role in various digital signal 

processing and image processing applications [1, 

2]. Not only it is frequently encountered in many 

different applications, but also it is computation-

intensive. Since DFT is highly computation-

intensive, algorithms and architectures are 

suggested for implementation of the DFT in 

dedicated very-large-scale integration circuit [3]. 

DFT and inverse discrete Fourier transform (IDFT) 

have been regarded as the key technologies for 

signal processing in orthogonal frequency division 

multiplexing (OFDM) communication systems. 

The fast Fourier transform (FFT) is an algorithm 

that computes the DFT using much less operations 

than a direct realization of the DFT. The fast 

realization approach of DFT [4] is known as FFT. 

FFT algorithms [5, 6] are used for efficient 

computation of DFT. 

In this paper, a new radix-3 algorithm for 

realization of DFT of length N = 3
m 

(m = 1, 2, 3,...) 

is presented. The DFT of length N can be realized 

from three DFT sequences, each of length N/3. If 

the input signal has length N, direct calculation of 

DFT requires O (N
2
) complex multiplications (4N

2
 

real multiplications) and some additions. This 

radix-3 algorithm reduces the number of 

multiplications. For example, the number of 

complex multiplications required for realizing 9-

point DFT using the proposed radix-3 algorithm is 

60. Therefore, the hardware complexity and 

execution time for implementing radix-3 DFT 

algorithm can be reduced. 

The rest of the paper is organized as 

follows. The proposed radix-3 algorithm for DFT is 

presented in Section-II. An example for 

implementation of DFT of length N = 9 is 

presented Section-III. Conclusion is   given in 

Section-IV. 

 

II. PROPOSED RADIX-3 ALGORITHM FOR DFT 

The 1-D DFT of input sequence {x (n); n = 0, 1, 2,...., N-1} is defined as 
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The ( )Y k values represent the transformed data.  
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  , (1) can be written as 

                                         1

0

( ) ( )

N
k n

N

n

Y k x n W





 
                                                                                            (2) 

The term 
k n

NW   is known as twiddle factor. 
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Taking  ( 1, 2 , 3, ...)3
m

mN 
 , the N  output components (0 ) , (1) , ( 2 ) , ..., ( 1)Y Y Y Y N   are arranged 

in three groups, namely   3 , (3 1) ( 3 1),Y r Y r and Y N r     where   0 , 1, 2 , ..., 1
3

N
r   .      

The following expressions can be derived from (2). 
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Where 3k r  and 0 , 1, 2 , ..., 1 .
3

N
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Where 3 1k r   and 0 , 1, 2 , ..., 1 .
3

N
r     
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Where ( 3 1)k N r    and 0 , 1, 2 , ..., 1 .
3

N
r     

The output components  ( ); 0,1, 2 , ..., 1Y k k N   can be realized using (3), (4) and (5) as shown in the 

butterfly structure of Fig. 1. 

 

                                                                                               0 , 1, 2 , ...., 1 ;
3

N
n    0 , 1, 2 , ..., 1

3

N
r     

Fig.1. Butterfly structure for realizing DFT of length N 

 

III. EXAMPLE FOR REALIZATION OF DFT OF LENGTH N = 9 
Substituting N = 9 and k = 0 in (1), we have 

                            
 

8 2

0 0

( 0 ) ( ) ( ) ( 3 ) ( 6 )

n n

Y x n x n x n x n

 

      
                                                     

                       
2 2

9

0

( 0 ) ( ) ( 3 ) ( 6 )
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           fo r 0k                              (6) 

Substituting N = 9 and k = 3 in (1), we get 
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Since  2

1
j

e


  and  4

1
j

e


  , (7) can be expressed as 
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Substituting N = 9 and k = 6 in (1), we have 
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Since  4

1
j

e


  and  8

1
j

e


  , (9) can be written as 
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In general (6), (8) and (10) can be expressed as 
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Since  
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  , the above expression can be expressed as  
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The above expression is same as (3) for N = 9, 3k r  and  0,1 & 2r   . 

Substituting N = 9 and k = 1 in (1), we obtain 
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Substituting N = 9 and k = 4 in (1), we have 
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Since  2 4
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  , the above expression can be written as  
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  Substituting N = 9 and k = 7 in (1), we get 
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 In general (12), (13) and (14) can be expressed as 
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The above relation is same as (4) for N = 9, 3 1k r   and 0,1 & 2r   . 

Substituting N = 9 and k = 2 in (1), we obtain 
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 Substituting N = 9 and k = 5 in (1), we get 
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 Substituting N = 9 and k = 8 in (1), we have 
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 In general (16), (17) and (18) can be expressed as 
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The above relation is same as (5) for N = 9, 9 3 1k r    and 0,1 & 2r   . 

The output components (0 ) , (1) , ( 2 ) , ...., (8 )Y Y Y Y  can be realized using (11), (15) and (19) as shown in Fig. 2. 

 

 
Fig.2.Signal flow graph for realization of DFT of length N = 9 

 

IV. CONCLUSION 
 A new radix-3 algorithm for realization of 

DFT of length N = 3
m 

(m = 1, 2, 3,...) has been 

proposed. The DFT of length N is realized from 

three DFT sequences, each of length N/3.  A 

butterfly structure for realizing the radix-3 

algorithm for DFT of length N is shown and the 

signal flow graph for DFT of length N = 9 is given 

to clarify the proposal.  Direct calculation of DFT 

of length N requires O (N
2
) complex multiplications 

(4N
2
 real multiplications) and some additions. This 

radix-3 algorithm reduces the number of 

multiplications required for realizing DFT. For 

example, the number of complex multiplications 

required for realizing 9-point DFT using the 

proposed radix-3 algorithm is 60. Therefore, the 

hardware complexity and execution time for 

implementing radix-3 DFT algorithm can be 

reduced. 
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